Largest product in a grid
Problem 11
In the 20×20 grid below, four numbers along a diagonal line have been marked in red.
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
(https://projecteuler.net/problem=11)
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
The product of these numbers is 26 × 63 × 78 × 14 = 1788696.49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
What is the greatest product of four adjacent numbers in the same direction (up, down, left, right, or diagonally) in the 20×20 grid?
Problem 11 can be done manually without complicated algorithms.
There will be four components in our calculation: horizontal —, vertical |, descending diagonal \ and ascending diagonal /.
First step is to store the numbers into 20 x 20 2-D arrays.
This can be done manually, or using file reader.
public static int[][] read() { int[][] text = new int[20][20]; File file = new File(text011); try (BufferedReader br = new BufferedReader(new FileReader(file))) { String line; for (int i=0; (line = br.readLine()) != null; i++) { String[] temp = line.split(" "); for (int j=0; j < 20; j++) text[i][j] = Integer.parseInt(temp[j]); } } catch (IOException e) { System.err.println(e); } return text; }
After this, we will set the limit to 20 - 3, or 17.
The reason is that once we get to the column (or row) 17, we reached the maximum starting point since 17, 18, 19, 20 will form the last four-adjacent groups.
The remaining steps are to calculate the greatest sum using nested for-loops.
Horizontal will be increasing column by 0, 1, 2, 3:
h = grid[i][j] * grid[i][j+1] * grid[i][j+2] * grid[i][j+3];
Vertical will be increasing row by 0, 1, 2, 3:
v = grid[j][i] * grid[j+1][i] * grid[j+2][i] * grid[j+3][i];
Descending Diagonal will be increasing both row and column by 0, 1, 2, 3:
d1 = grid[i][j] * grid[i+1][j+1] * grid[i+2][j+2] * grid[i+3][j+3];
Ascending Diagonal will be decreasing column and increasing row at the same time by 1:
d2 = grid[i][j+3] * grid[i+1][j+2] * grid[i+2][j+1] * grid[i+3][j];
thus maintaining the sum of row and column as i + j + 3.
It was relatively easy problem, and there isn't any faster or fancier algorithm to solve it.
Answer is 70600674
Execution time is 3.771644 ms, or 0.003 seconds
Source Code: https://github.com/Ainodyne/Project-Euler/blob/master/Problem011.java
No comments:
Post a Comment